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PREFACE

The rationale of ‘science in the making’ is based on a history and philosophy of 
science perspective which involves various interactive processes based on pre-
suppositions of the scientist, alternative interpretations of the data, controversies 
among scientists having similar experimental data, inconsistencies involved in the 
construction of a theory, and the theory-laden nature of scientific knowledge. 
The history of science bears witness to these and the essence of science is best 
characterized by the creativity and imagination of the scientists. In contrast, the 
traditional science curriculum and textbooks espouse an entirely opposite strategy 
of presenting science as a finished product, in which students simply regurgitate 
experimental details. According to some researchers, such presentations constitute 
a “false” image of science, which is not conducive toward a better understanding 
of science. This leads to the question: Why do we deny our students an image of 
science based on how it is practiced by scientists (‘science in the making’)? Based 
on a critical analysis of various historical episodes, this book provides plausible 
answers.

The main objective is to familiarize students, teachers, and researchers with 
‘science in the making’ through various historical episodes, such as: Discovery 
of the planet Neptune; Discovery of the elementary particle neutrino; Dalton’s 
determination of the law of multiple proportions; Maxwell’s kinetic theory of 
gases; Mendeleev’s periodic table; Thomson’s discovery of the electron; Ruther-
ford’s nuclear atom; Bohr’s model of the atom; Millikan’s determination of the 
charge of the electron; Millikan’s determination of Planck’s constant h; Determi-
nation of wave-particle duality by de Broglie; and Perl’s determination of the Tau 
Lepton. This provides a rich landscape of scientific endeavor covering a period of 
over 200 years. Some of the salient features of this book:
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a. It shows how ‘science in the making’ is a rich source of motivating students 
to engage creatively with the science curriculum.

b. It discusses and critically analyzes a wide range of historical episodes from 
Dalton (early 19th century) to Perl (early 21st century).

c. It presents recent cutting-edge research that provides insight into the dynam-
ics of scientific progress (based on Nobel Laureate Martin Perl’s discovery of 
the Tau Lepton).

d. It looks at how the views of Nobel Laureate Leon Cooper can influence in-
service teachers’ understanding of the nature of science.

e. It reviews over 90 studies from major science education journals (2004–
2008), related to the nature of science.

f. It offers a theoretical framework developed and field tested with in-service 
science teachers: Presuppositions, Research questions, Heuristic principles, 
Designing experiments, and Understanding the nature of science.

g. It includes a new scenario in the classroom in which students and teachers 
could present arguments and counter-arguments based on historical recon-
structions of various episodes in the history of science.

In writing this book my objective was not any particular course. This has the 
advantage that the book could be adopted for various types of courses, such as: 
Teaching the nature of science, Introduction to the history and philosophy of sci-
ence, Research methodology. The book is rich in content-based issues related to 
various historical episodes. The intended audience for this book is secondary and 
university-level teachers, science teacher educators, researchers in science educa-
tion, science methods course teachers, and students.

Chapter 2 establishes a relationship between ‘science in the making’ and heu-
ristic principles within a historical context. Research relating to students’ and 
teachers’ understanding of the nature of science is reviewed in Chapter 3. Next, 
Chapter 4 explores the difficulties involved in introducing the nature of science 
to in-service chemistry teachers. Chapter 5 draws attention to the need for dif-
ferentiating between experimental data and heuristic principles. How the views of 
Leon Cooper (Nobel laureate) can influence in-service science teachers’ under-
standing of the nature of science is the subject of Chapter 6. Martin Perl’s (Nobel 
laureate) perspective on the nature of science and teaching science is presented in 
Chapter 7. The contents of this book are organized around three main themes: 
(a) Chapters 2 and 3 deal with ‘science in the making’ in a historical context and 
with students’ and teachers’ understanding of the nature of science; (b) Chapters 
4 and 5 explore the experiences of classroom teachers with respect to heuristic 
principles and the nature of science; and (c) Chapters 6 and 7 deal with two Nobel 
laureates’ perspectives on the nature of science. Readers can select the chapters 
that address their particular interests.
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1
INTRODUCTION

Research in science education has recognized the importance of history and phi-
losophy of science (HPS) for teaching science. A review of this research shows 
that most students and teachers do not have adequate epistemological views of the 
nature of science (NOS). This raises many issues, such as: (a) Why is it important 
to understand how science works? (b) Is it not sufficient for students to learn the 
content of science? (c) Do students have to learn how and why a scientist per-
formed an experiment? (d) Does it help students to know that the same experi-
mental data was interpreted differently by another scientist? (e) Do we present a 
false image of science in our textbooks and classrooms? (f) Is the false image of 
science conducive towards a better understanding of science? (g) Does the science 
curriculum motivate students to engage creatively and form part of a responsible 
citizenry? These issues impinge on the NOS and this book provides plausible 
answers. Hodson (2009) has emphasized the need for a science curriculum that 
deals with such NOS issues:

We should ask why a false or confused NOS knowledge constitutes a major 
problem for science education. In short, why does it matter what image 
of science is presented and assimilated? It matters insofar as it influences 
career choice, and so may have long-term consequences for individuals. 
It matters if the curriculum image of science is such that it dissuades crea-
tive, non-conformist, and politically conscious individuals from choosing 
to pursue science at an advanced level . . . Failing to provide every student 
with an adequate understanding of the nature of science runs counter to the 
demand for an educative citizenry capable of responsible and active partici-
pation in a democratic society. (pp. 142–143)
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Nobel laureate Kenneth G. Wilson1 has similarly emphasized that history of sci-
ence, “helps students considering science as a career to think, ask questions, and 
explore the concepts and ramifications of broad topics, enabling them to grasp 
what science is about and how it is conducted” (Gooday, Lynch, Wilson, & Bar-
sky, 2008, p. 323).

Science textbooks have generally been found to emphasize the empiricist per-
spective according to which experimental findings unambiguously lead to the 
formulation of scientific laws and theories. The present state of our textbooks can 
be summarized in the following terms: “These trends are incommensurate with 
the discourse in national and international science education reform movements” 
(Abd-El-Khalick, Waters, & Le, 2008, p. 835). In a similar vein, Winchester 
(2006) has cautioned: “However one characteristic stands out for most textbooks 
in our own time, namely, that they are concentrated presentations of results of 
previous thought, thought that in fact had a long history. And that history is usu-
ally ignored” (p. 1).

This should be cause for concern for most science teachers and especially those 
interested in the HPS. Such a state of our textbooks is even more troublesome 
if in retrospect we consider what Holton warned almost four decades ago with 
respect to what he called the myth of experimenticism, namely scientific research 
as the inexorable result of the pursuit of logically sound conclusions from experi-
mentally indubitable premises:

Almost every science textbook of necessity places a high value on clear, 
unambiguous, inductive reasoning. The norm of rationalism in the class-
room would seem to be threatened if the text were to allow that a correct 
inductive generalization may be made without unambiguous experimental 
evidence. Hence, the likelihood is a priori great that any pedagogic presen-
tation of any subject will suggest a clear genetic link from experiment to 
theory. (Holton, 1969, p. 974, original italics)

More recently, historian and philosopher of chemistry Trevor Levere, address-
ing the 7th International History, Philosophy and Science Teaching Conference, 
Winnipeg, Canada, expressed a similar concern in cogent terms:

many authors of science textbooks still write as if there were such a thing as 
the scientific method, and use labels like induction, empiricism, and falsifi-
cation in simplistic ways that bear little relation to science as it is practiced. 
(Levere, 2006, pp. 115–116, original italics)

‘Science as it is practiced’ by scientists, as suggested by Levere, can indeed be an 
important guideline for science textbooks and teaching science. This leads to an 
intriguing question: Why do we deny our students the dynamics of scientific 
progress based on science as a human enterprise (‘science in the making’)? Of 
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course, there is no simple answer to this question. One plausible answer could be 
that traditional science education does not comprehend the creative and contin-
gent nature of science. Philosopher-physicist James Cushing (1989) has referred 
to this in the following thought provoking terms: “science is an historical entity 
whose practice, methods and goals are contingent. There may not be a rationality 
which is the hallmark or the essence of science” (p. 2, original italics. In a footnote 
Cushing explains what he means by contingent, “I simply mean not fixed by logic 
or necessity”, p. 20). This might sound sacrilegious to traditional science teachers 
and textbook authors. Holton, Levere, and Cushing are trying to present a histor-
ical perspective of how science is practiced by scientists, namely construction of 
a scientific theory involves various interactive processes such as: presuppositions 
of the scientist, alternative interpretations of data, controversies among scientists 
having similar experimental data, inconsistencies involved in the construction of 
a theory, and the theory-laden nature of scientific knowledge.

History of science bears witness to these difficulties and the essence of science 
is perhaps characterized by the creativity and imagination of scientists. Under this 
perspective, telling students that scientists are rational would be too simplistic 
and it would be more motivating to reconstruct the different historical episodes 
in order to illustrate ‘science in the making’ and how science is practiced by 
scientists (Niaz, 2010a). In other words, the construction of knowledge requires 
assumptions that support reasoning within a social and cultural context (Longino, 
1990, p. 219). Discussion of historical episodes can provide students with an 
opportunity to glimpse the complexity of the scientific enterprise and appreci-
ate how, “both rationality and objectivity come in degrees and that the task of 
good science is to increase these degrees as far as possible” (Machamer & Wolters, 
2004, p. 9).

According to Schwab (1974) within a historical perspective, scientific enquiry 
is based on a conceptual structure of a discipline:

The structure of a discipline consists, in part, of the body of imposed con-
ceptions which define the investigated subject matter of that discipline and 
control its inquiries . . . we cannot, with impunity, teach the conclusions 
of a discipline as if they were about the whole subject matter and were the 
whole truth about it. For the intelligent student will discover in time—
unless we have thoroughly blinded him by our teaching—that any subject 
behaves in ways which do not conform to what he has been told about it. 
(p. 166)

Translating this into an HPS context, the structure of a discipline would repre-
sent the guiding assumptions, theoretical framework, and presuppositions of the 
scientist. This helps the scientist to formulate research questions, operationalize 
heuristic principles, design experiments, and finally interpret the results. This 
process helps our understanding of the NOS. Actually, Schwab goes beyond 
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by alluding to the changing nature of a discipline and hence the need to make 
students aware of it. This advice from Cushing (1989), Holton (1969), Levere 
(2006), and Schwab (1964) has not only been ignored but, rather, most science 
curricula and textbooks espouse an entirely opposite strategy of presenting science 
as a finished product (final form, cf. Duschl, 1990) based on a “rhetoric of conclu-
sions,” which does not facilitate our understanding of ‘science in the making’ and, 
hence, the NOS.

At this stage it is important to note that the NOS is an important area of research 
and of considerable interest to science educators. In a recent study Chang, Chang 
and Tseng (2010) analyzed the content of science education research based on 
the scientometric method of multi-stage clustering. These authors found a total 
of 3,039 articles from four major science education journals, namely International 
Journal of Science Education, Journal of Research in Science Teaching, Research in Science 
Education, and Science Education, during the period from 1990 to 2007. Multi-
stage clustering facilitated the identification of nine important topics (clusters), of 
which “Conceptual change and concept mapping” had the highest number (n = 
553) of articles. The next topic of importance was “Nature of science and socio-
scientific issues” with 191 articles, published by authors from various countries 
around the world. Furthermore, in 1990 there were only two articles on NOS-
related issues and this number increased to 25 in 2006. This clearly shows the 
increasing importance of the NOS for teaching science.

In order to facilitate students’ and teachers’ understanding of the NOS, it is 
essential that they are provided with a glimpse of scientific practice imbued with 
arguments, controversies, and competition among rival theories and explanations 
(cf. Niaz, Aguilera, Maza, & Liendo, 2002). Based on this perspective, the objec-
tive of this book is to explore ‘science in the making’ in order to understand the 
NOS and, consequently, to draw conclusions for teaching science. In this chapter 
I shall use two episodes from the history of science (discovery of the planet Nep-
tune and the elementary particle the neutrino), to illustrate how ‘science in the 
making’ can be helpful for understanding the NOS.

Discovery of the Planet Neptune
Discovery of this planet is a good example for illustrating ‘science in the making.’ 
Neptune was the first planet to be discovered due to evidence that indicated that 
it was causing a gravitational effect leading to irregularities in the orbit of another 
planet, Uranus (discovered in 1781 by Friedrich W. Herschel). Thus, scientists 
predicted the existence of Neptune before it was observed (Grosser, 1962). In 
1845, John C. Adams at St. John’s College, Cambridge, estimated the orbit of the 
unknown planet to be beyond that of Uranus, and predicted that it could account 
for the irregularities in its motion. Later, Urbain J.J. Leverrier in France made 
similar calculations in 1846 and communicated them to the French Academy of 
Sciences and Johann G. Galle in Berlin, who discovered the planet on Septem-
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ber 23, 1846. At the time of its discovery Neptune was only 1º from the place 
predicted by Leverrier and about 2½º from the place predicted by Adams.

Interestingly, Adams had communicated his calculations among others to the 
English astronomer James Challis at Cambridge. Challis undertook to verify the 
calculations of Adams and Leverrier, especially with respect to the existence of a 
new planet (for details, see Smart, 1946). Challis sighted the undiscovered planet 
(i.e., Neptune) at least four times during the summer of 1846 (once on August 4), 
that is before Galle. According to philosopher-physical chemist Michael Polanyi 
(1964), “these facts made no impression on him [Challis], for he distrusted alto-
gether the hypothesis which he was testing” (p. 30). This clearly shows how 
lack of a belief in a presupposition (existence of Neptune) led Challis to ignore 
relevant experimental data.

Now let us see how a physicist-philosopher of science has interpreted the dis-
covery of Neptune based on a conjecture:

Leverrier and Adams [must have wondered] “Look here, the planet Ura-
nus is not keeping time properly; the only way we can both acknowledge 
that fact and also save celestial mechanics is to suppose that there is another 
object, some “dark body,” which has the following properties, a, b, c . . . 
etc.” And they worked out the properties of this “in reverse,” as it were. 
What would have to be the properties of a planet in order to perturb Ura-
nus as it is perturbed? (Hanson, 1964, pp. 166–167)

This constitutes an interesting example of ‘science in the making.’ Early conjec-
tures of Leverrier and Adams, subsequent discovery of Neptune by Galle, and 
the interpretation by Hanson, are all based on the premise that Newton’s physics 
and especially the law of gravitation correctly described the orbits of the planets. 
Hanson (1958) pays tribute to the intellectual efforts of Leverrier in the follow-
ing terms: “How remarkable that this man [Leverrier] should have raised classical 
mechanics to its highest pinnacle by predicting the unseen Neptune as being 
responsible for observed aberrations in the orbit of Uranus” (pp. 203–204).

Lakatos (1970) goes beyond and provides further insight by presenting an imag-
inary case of planetary misbehavior that elucidates how scientists do science:

A physicist of the pre-Einsteinian era takes Newton’s mechanics and his law 
of gravitation (N), the accepted initial conditions, I, and calculates, with 
their help, the path of a newly discovered small planet, p. But the planet 
deviates from the calculated path. Does our Newtonian physicist consider 
that the deviation was forbidden by Newton’s theory and therefore that, 
once established, it refutes the theory N? No. He suggests that there must 
be a hitherto unknown planet p′ which perturbs the path of p. He cal-
culates the mass, orbit, etc., of this hypothetical planet and then asks an 
experimental astronomer to test this hypothesis. The planet p′ is so small 
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that even the biggest available telescopes cannot possibly observe it: the 
experimental astronomer applies for a research grant to build yet a bigger 
one . . . Were the unknown planet p′ to be discovered, it would be hailed 
as a new victory of Newtonian science. But it is not. Does our scientist 
abandon Newton’s theory and his idea of the perturbing planet? No. He 
suggests that a cloud of cosmic dust hides the planet from us . . . But the 
cloud is not found. Is this regarded as a refutation of Newtonian science? 
No . . . [and] yet another ingenious auxiliary hypothesis is proposed . . ..
(pp. 100–101)

Motterlini (1999, p. 69) considers that the imaginary story of the planet related 
by Lakatos is based on many real historical instances including the discovery of 
Neptune. This story encapsulates many aspects of ‘science in the making’ and thus 
has implications for understanding the NOS, as follows: (a) When confronted 
with empirical evidence that seems to refute a scientific theory, scientists generally 
resist such a refutation and look for an alternative hypothesis; (b) The alternative 
hypothesis requires further experimental evidence (mass, orbit, and other char-
acteristics of an unknown planet, for example the work of Adams and Leverrier 
in the case of Neptune); (c) The process of finding alternative hypotheses and 
looking for experimental support can continue for some time; (d) The role of 
these “auxiliary hypotheses” is to protect the guiding assumptions or hard-core 
of a theory (Newtonian theory in the present case); (e) Eventually, the hard-core 
of a theory crumbles and a new theoretical framework assumes the role of theory 
building (Einstein’s general relativity theory, 1915, in the present case).

Discovery of the Elementary Particle Neutrino
Before 1930 it was generally believed that, based on Einstein’s equation, E = 
mC2, mass-energy is conserved in nuclear reactions. Based on this assumption, 
generally referred to as “energy conservation” whenever there is a change of mass 
in nuclear reactions, the difference shows up as kinetic energy, as indicated by 
Einstein’s equation. By the end of the 1920s it was found that energy conservation 
does not seem to hold for beta decay reactions (changing a neutron into a proton 
and an electron in radioactivity), as about one-third of the energy seems to disap-
pear. To uphold the law of conservation of energy it was postulated that another 
particle is emitted that carries off the missing energy. This implied the existence 
of particles called neutrinos, predicted as early as 1929 by W. Pauli, years before 
they were actually discovered.

Although the neutrino could not be detected for many years, it became impor-
tant after Enrico Fermi presented his theory of beta decay in 1933 in which 
neutrinos (Italian for “small neutral one”) are emitted and by 1940 it was used 
routinely by nuclear theorists (Kragh, 1999). Fermi’s theory identified the weak 
nuclear force as being distinct from the strong nuclear force and responsible for 
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beta decay. Interestingly, Fermi’s ground breaking theory of beta decay, which 
founded the modern theory of weak interactions, was first rejected by Nature. 
Neutrinos are massless, chargeless, do not feel the strong nuclear force, and inter-
act via the very short-ranged weak nuclear force. Recent research based on neu-
trino oscillations, however, has shown that neutrinos might have mass. Actually 
physicists believed in the existence of the neutrino even though it had not been 
detected, and for some it was simply a convenient way of organizing experimental 
data.

Despite the difficulties and a lack of interest in the experimental detection of 
the neutrino, in 1951 Frederick Reines and Clyde Cowan at Los Alamos started 
planning experiments. In 1956, using the Savannah River reactor as a neutron 
source, Reines and Cowan found signals that were considered signs of neutrino–
proton reactions (Cowan et al., 1956). Reines shared with Martin Perl the 1995 
Nobel Prize for physics (Cowan had died earlier). In his Nobel Prize accep-
tance speech, thoughtfully entitled, “The neutrino: From poltergeist to particle”, 
Reines referred to the original idea of Pauli in the following terms:

The neutrino of Wolfgang Pauli was postulated in order to account for an 
apparent loss of energy-momentum in the process of nuclear beta decay. In 
his famous 1930 letter to the Tübingen congress, he stated: “I admit that my 
expedient may seem rather improbable from the first, because if neutrons2 
existed they would have been discovered long since. Nevertheless, nothing 
ventured nothing gained . . . We should therefore be seriously discussing 
every path to salvation.” (Reines, 1997, p. 203)

In June 1956, Reines and Cowan sent a telegram to the man who started it all 
(Pauli) informing him that they had definitely detected neutrinos from fission 
fragments by observing inverse beta decay of protons. Pauli’s response was pro-
phetic indeed and shows yet another facet of ‘science in the making,’ “Everything 
comes to him who knows how to wait, Pauli” (Reproduced in Reines, 1997, 
p. 215).

According to Hanson (1958), “The neutrino idea, like those of other atomic 
particles, is a retroductive conceptual construction out of what we observe in the 
large” (p. 124, emphasis added). Considering the immense efforts required to 
detect the neutrino, Kuhn (1970) concluded: “no experiment can be conceived 
without some sort of theory, the scientist in crisis will constantly try to generate 
speculative theories that, if successful, may disclose the road to a new paradigm” 
(p. 87).

In contrast to the traditional textbook science, these two episodes from ‘sci-
ence in the making’ (Neptune and neutrino) clearly show that scientists generally 
resist the refutation of a theory by putting up alternatives and that besides the 
experimental apparatus a scientist is almost always accompanied by his presupposi-
tions that provide guidance in the face of difficulties.
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Schwab versus Hanson: From Structure of a 
Discipline to Structure of Scientific Knowledge
In this section I plan to contrast the views of educational philosopher Joseph 
Schwab with those of physicist-philosopher Norwood Russell Hanson. This is 
based on an exchange between the two at the Fifth Annual Phi Delta Kappa 
Symposium on Educational Research, held at the College of Education, Univer-
sity of Illinois, 1964. Schwab was then Professor of Education, Graduate School 
of Education, University of Chicago and Hanson was Professor of Philosophy 
at Yale University. There were other participants at the Symposium, familiar to 
science educators, such as: David Ausubel, Professor of Educational Psychology, 
University of Illinois; Carl Bereiter, Assistant Professor of Educational Psychol-
ogy, University of Illinois; Egon Guba, Director, Bureau of Educational Research 
and Service, Ohio State University; Nathaniel Gage, Professor of Educational 
Psychology, Stanford University. By any standard, this was a very select group of 
considerable interest to research in science education and the issues discussed bear 
witness to the intellectual acumen of the participants.

Schwab (1962, 1974) is well known for his Structure of a Discipline, and Han-
son (1958) for his Patterns of Discovery. In his lecture at the Symposium, Hanson 
emphasized the difference between the Binomial theorem and a description of 
physical phenomena in binomial form. In contrast to mathematics, subject matter 
in physics is not exclusively determined by the postulates and principles of infer-
ence. After providing various examples, Hanson (1964) concluded: “No statement 
of pure mathematics can be presumed necessarily true when adapted to physical inquiry” (p. 
152, original italics). For example, it is not a mathematical truth that a body will 
either remain at rest or else move uniformly and rectilinearly to infinity, in the 
absence of impressed forces. Although this is a standard assumption in kinematics, 
Hanson wanted students to know that Aristotle and two millennia of Aristotelians 
would have denied such a claim. After Hanson (1964) finished his lecture, the 
following exchange took place with Schwab (in order to avoid lengthy sequences, 
some of the responses have been shortened):

Schwab: . . . an idea developed by Einstein that the greatest mistake that we 
make about physics is to suppose that it is an “inductive” science. 
Einstein and Whewell . . . suggest that physics, quite the contrary, is 
the imaginative invention of an essentially mathematical construction 
adequate to subsume the data which one is concerned to organize and 
account for (p. 164).

Hanson: What you say is false (p. 165).
Schwab: Wait a minute. And consequently when the empirical test is made, 

as you are insisting that it must be made, it is made not of an isolated 
proposition alone but on the entire corpus (p. 165).

Hanson: That’s alright (p. 165).
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Schwab: . . . insofar as the whole big corpus of theory can be treated algorithmi-
cally then there is a funny way in which physics and mathematics do 
mix . . . (p. 165).

Hanson: That’s what you are suggesting and that’s what I am denying . . . even 
the most “transparent” principle, like the Principle of Conservation of 
Energy . . . remain empirically vulnerable claims . . . semantically, the 
pure physics and the pure mathematics are on opposite sides of the logi-
cal ravine (pp. 165–166).

Schwab: Nobody in his right mind could argue against your thesis as to which 
side of the ravine physics is on (p. 166).

Hanson: Then I don’t understand what you are arguing about (p. 166, original 
italics).

Schwab: I am not arguing . . . For example, you know very well that one of the 
particles that [Wolfgang] Pauli invented was invented precisely for the 
convenience of preserving one of the conservation laws . . . (p. 166).

Hanson: You are really answering my question for me, because it was the nature 
of that “invention” of the neutrino (in 1929 and 1930), an invention 
generated solely in order to save the conservation principle, which 
threw a shadow of dubiety on that particular discovery. It wasn’t until 
the empirical work of Cowan and Reines in 1956 and 1957 (at Savan-
nah River) that the neutrino became fully respectable; there was an 
observable effect that showed the physicist not only to be inventing 
entities to save a theory, but also to be discovering empirical evidence 
for this invention (p. 166, original italics).

Schwab: I agree (p. 166).
Hanson: [Anderson told me]: “I don’t believe there is any such thing. All they 

(Cowan and Reines) show are some numbers, and not all of the num-
bers. I can just barely believe there is a genuine effect.” . . . what 
Anderson was saying then was this: “If you really want me to entertain 
the neutrino as a physical entity capable of all the explanatory tricks the 
theoreticians want, then show me something, in a cloud chamber or 
somewhere . . . I want to see what the difference is that answers to the 
name ‘neutrino.’” Now you are quite right to point out that, to theore-
ticians, this kind of complaint doesn’t mean much—or not very much 
(p. 169, original italics). [Carl D. Anderson, a former student of Robert 
Millikan discovered the positron in 1932. Hanson met him at the High 
Energy Conference in Rochester in 1957, and the remark cited above 
was made when they were discussing the evidence for the existence of 
the neutrino].

Schwab: . . . for every ten Andersons there is one Fermi, who said it would be 
nice if neutrinos were verified in the way which neutrons, protons, 
and electrons were, but I think it would be helpful to adopt it now 
(p. 171).
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Hanson: Well, that is a nice statement about you, Joe . . . All I am trying to 
call attention to is what you are obscuring (and in so doing you are 
being “nasty, brutish, and short”). If one stresses what you are stressing, 
namely, that in physics you . . . (p. 171, original italics).

Schwab: Well, you . . . (p. 171).
Hanson: If I may just finish, please. If one stresses what you have been stressing 

. . . one fails to perceive the fundamental logical difference between 
every single proposition of physical theory and every single proposition 
in a purely mathematical algorithm (pp. 171–172, original italics).

At first sight it seems that the issues being discussed by Hanson and Schwab are 
of minor importance and not of direct relevance to science education. However, 
I will now elaborate and show that despite the similarities of views the issues being 
discussed are of fundamental importance for ‘science in the making,’ understand-
ing the NOS, and teaching science. Furthermore, it is important to note that 
despite a similar epistemological stance, both Hanson and Schwab make a pas-
sionate and rather obdurate defense of their respective positions, leading to some 
tense moments in the debate. This also shows that understanding the NOS is a 
difficult enterprise and similar debates have also been observed at science educa-
tion conferences (for details, see Niaz, 2008a, pp. 135–136).

It seems that the difference between the epistemological positions of Hanson 
and Schwab can be summarized in the following terms: For Hanson, despite the 
similarities mathematical propositions are axioms which cannot be adapted in the 
context of physical science. On the contrary, Schwab would suggest that proposi-
tions and their meaning (or premises) do not directly refer to empirical facts, and 
thus there is something strangely mathematical about physics. Schwab (1964) 
presents his perspective of scientific knowledge in cogent terms:

In general, then, enquiry has its origin in a conceptual structure. This struc-
ture determines what questions we shall ask in our enquiry; the questions 
determine what data we wish; our wishes in this respect determine what 
experiments we perform. Further, the data, once assembled, are given their 
meaning and interpretation in the light of the conception which initiated the 
enquiry. (p. 9, emphasis added)

Indeed, this constitutes an outline of a research methodology based on: concep-
tual structure → questions → wishes (i.e., presuppositions) → experiments → 
data → understanding based on meaning and interpretation. These are important 
issues for understanding ‘science in the making’ within an HPS perspective.

At this stage it would be interesting to see how Duhem (1914) an important 
philosopher of science would view this dilemma: “What the physicist states as the 
result of an experiment is not the recital of observed facts, but the interpretation 
and the transposing of these facts into the ideal, abstract, symbolic world created by 
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the theories he regards as established” (p. 159, italics added). In the case of a clash 
between the two (empirical facts and theory), Duhem suggested upholding the 
experimental facts and considered the theory to be a “parasite,” which in a way 
contradicted his own philosophical position. Now it is plausible to suggest that 
the ideal, abstract, symbolic world comes quite close to what Schwab referred to as 
propositions and their meaning. The controversy between Hanson and Schwab 
also reflects a contradiction similar to that of Duhem. Hanson seems to be uphold-
ing a position, quite similar to that of Duhem, that considers the experimental 
facts to be paramount. Schwab, on the contrary, espouses a philosophical position 
that comes quite close to what scientists do (based on a pluralistic model) under 
such circumstances and fully endorsed by Lakatos:

In the pluralistic model the clash is not “between theories and facts” but 
between two high-level theories: between an interpretative theory to provide 
the facts and an explanatory theory to explain them; and the interpretative 
theory may be on quite as high a level as the explanatory theory . . . the 
problem is which theory to consider as the interpretative one which provides the 
“hard” facts and which the explanatory one which “tentatively” explains them. In a 
mono-theoretical model we regard the higher-level theory as an explanatory 
theory to be judged by the “facts” delivered from outside (by the authoritative 
experimentalist): in the case of a clash we reject the explanation. (Lakatos, 
1970, p. 129, original italics)

According to Lakatos, based on a mono-theoretical model a theory can be rejected 
on the sole grounds of experimental evidence. ‘Science in the making’ (based on 
the pluralistic model) shows that rejection of a theory is not a simple and straight-
forward question of accepting or rejecting experimental evidence. On the con-
trary, interpretation of experimental evidence is extremely difficult, which leads 
to conflicts and controversies among contending groups of scientists. Within the 
Lakatosian framework the “hard-core” (negative heuristic) of a research program 
is resistant to refutation and may even be based on contradictory and inconsist-
ent foundations (for details, see Niaz, 2011, pp. 15–16). Similarly, Giere (2006) 
has endorsed the pluralistic view of progress in science based on “perspectival 
realism” (p. 5). In contrast to “objective realism,” Giere espouses a perspective 
according to which no theory can provide us with a complete and literally correct 
picture of the world.

History of science shows that scientific controversies at times can continue for 
decades and are generally brought to a closure by the intervention of the scientific 
community (e.g., Millikan’s oil drop experiment, cf. Niaz, 2005a). It is precisely 
in this respect that the Lakatosian framework goes beyond Duhem by suggesting 
that scientists are guided by their presuppositions (hard-core of beliefs) and they 
resist any change in this ideal, abstract and symbolic world. Niaz (2009a, Chapter 3) 
has presented a detailed comparison of the philosophies of Duhem and Lakatos 
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and concluded that scientific endeavor depends to a large degree upon the imagi-
nation and creativity of the scientists.

In this context, it is now possible to understand better the debate between 
Hanson and Schwab, especially with respect to the discovery of the neutrino. 
According to Schwab, scientific propositions (presuppositions, Holton, 1978; 
hard-core of beliefs, Lakatos, 1970) may be accepted even before confirming 
experimental evidence becomes available. Two leading physicists-historians of 
science would endorse a similar thesis in categorical terms: “Yet physicists had 
so much faith in the law of conservation of energy that they preferred to believe 
in an apparently unobservable particle [neutrino, suggested by Pauli] rather than 
abandon the law” (Holton & Brush, 2001, p. 502).

Similarly, Lawson (2010) has emphasized the role of theory-driven research 
for science education. ‘Science in the making’ provides many examples of how 
it is the theory (presuppositions) that decides what can be considered as data: (a) 
J.J. Thomson’s rejection of E. Rutherford’s hypothesis of compound scattering 
(alpha particle experiments) as he strongly believed in the uniform distribution of 
mass and charge in his atomic model (plum-pudding); (b) Millikan’s determina-
tion of the elementary electrical charge based on his presupposition of the atomic 
nature of electricity; (c) Millikan’s acceptance of Einstein’s equation to determine 
Planck’s constant h (photoelectric effect) and yet he still rejected the hypothesis 
of light quanta, as he strongly believed in the classical wave theory of light; (d) 
controversial experimental evidence of the bending of light in the 1919 eclipse 
experiments to support Einstein’s general theory of relativity (cf. Niaz, 2009a, 
Chapter 9); (e) De Broglie’s postulation of wave-particle duality before there was 
any experimental evidence. According to Schwab (1974) besides the presuppo-
sitions, scientific inquiry tends to look for patterns of change and relationships, 
which constitute the heuristic principles of scientific knowledge. It is precisely 
these heuristic principles that guide us to look for facts and what meaning to assign 
these facts. Various historical episodes discussed in Chapter 2, illustrate how the 
heuristic principles facilitate the designing of experiments.

Chapter Outlines
‘Science in the Making’ and Heuristic Principles in a Historical Context (Chapter 2). 
This chapter analyzes various episodes in the history of science based on the fol-
lowing framework: (1) Elaboration of a theoretical framework based on presup-
positions; (2) Formulation of research questions; (3) Operationalizing heuristic 
principles; (4) Designing experiments; and (5) Understanding the NOS. The 
following episodes that constitute important examples of ‘science in the mak-
ing’ were analyzed: (a) Dalton’s determination of the law of multiple propor-
tions in chemistry; (b) Maxwell’s kinetic theory of gases; (c) Mendeleev’s peri-
odic table of chemical elements; (d) Thomson’s determination of the mass to 
charge ratio of cathode rays; (e) Rutherford’s alpha particle experiments and the 
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nuclear atom; (f) Bohr’s model of the atom; (g) Millikan’s determination of the 
elementary electrical charge; (h) Millikan’s determination of Planck’s constant 
h; and (i) Determination of wave-particle duality by de Broglie. After having 
shown how ‘science in the making’ in a historical context facilitates an under-
standing of the NOS, it is suggested that the next step would be to incorporate 
these historical episodes in the context of the science curriculum and elaborate 
appropriate science stories.

Students’ and Teachers’ Understanding of the Nature of Science (Chapter 3). This chap-
ter reviews research on the following aspects and draws implications for science 
education: (a) Epistemological beliefs of students and teachers with respect to 
the NOS; and (b) Facilitating students’ and teachers’ understanding of the HPS, 
based on topics that are already in the science curriculum. This thematic review 
focuses on studies published in the period, 2004–2008 and draws upon articles 
in the following journals: International Journal of Science Education (n = 34), Journal 
of Research in Science Teaching (n = 28), and Science Education (n = 32). Of the 94 
studies reviewed, 60 (65%) are classified in the section on epistemological beliefs. 
Based on the subject, treatment, and orientation of the study, the following seven 
categories are generated: (1) Relationship between students’ and teachers’ epis-
temological beliefs (n = 27); (2) Myth of the scientific method (n = 3); (3) Chil-
dren’s scientific reasoning (n = 4); (4) Scientists’ views of the NOS (n = 9); (5) 
the NOS and the science curriculum (n = 10); (6) the NOS and students’ labora-
tory practice (n = 6); and (7) Science exhibitions for understanding the NOS (n 
= 1). Thirty-four studies are classified in the section on facilitating students’ and 
teachers’ understanding of the HPS, and the following six categories are gener-
ated: (1) The role of argumentation (n = 9); (2) Explicit and reflective vs. implicit 
inquiry-oriented instruction (n = 11); (3) The use of NOS-enriched materials (n 
= 7); (4) The use of history-based instructional material (n = 3); (5) The use of 
technology-based historical materials (n = 2); and (6) The use of science appren-
ticeship programs (n = 2).

How to Introduce the Nature of Science in the Classroom (Chapter 4). The objective 
of this study is to facilitate chemistry teachers’ understanding of the NOS and 
explore difficulties involved in its implementation in the classroom. The study 
is based on the responses of 16 in-service teachers who had registered for an 11-
week course on the “Epistemology of Science Teaching,” as part of their Master’s 
degree program in education. The course is based on 13 readings drawing on the 
NOS, critical evaluation of the NOS, and critical evaluation of constructivism. 
Course activities included written reports, classroom discussions based on partici-
pants’ presentations, and written exams.

The Role of Heuristic Principles in Understanding the Nature of Science (Chapter 5). 
Research in science education has drawn attention to the need for differentiating 
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between experimental data and “heuristic principles” that facilitate understand-
ing of the NOS. The objective of this study was to facilitate chemistry teachers’ 
understanding that emphasis on experimental data leads to a “rhetoric of conclu-
sions” and does not facilitate understanding of the NOS. The study is based on 26 
in-service teachers who had registered for a 10-week course on “Investigation in 
the Teaching of Chemistry,” as part of their Master’s degree program. The course 
is based on 18 readings drawing on the HPS, students’ alternative conceptions, 
and conceptual change. Course activities included written reports, classroom dis-
cussions based on participants’ presentations, and written exams.

How the Views of Leon Cooper (Nobel Laureate) can Influence In-service Teachers’ Under-
standing of the Nature of Science (Chapter 6). Research in science education has 
recognized the importance of the NOS for understanding science. Leon Cooper 
(Nobel laureate, physics, 1972), has presented a framework based on the HPS to 
facilitate a better appreciation of the dynamics of scientific progress. The objec-
tive of this study is to evaluate how the views of a Nobel laureate can influence 
in-service teachers’ understanding of the NOS based on a reflective and explicit, 
activity-based approach. The study is based on the responses of 20 participants 
who had registered for an introductory course as part of their doctoral program. 
Besides other material, the framework developed by Cooper (Niaz, Klassen, 
McMillan, & Metz, 2010b) was required reading. The importance of understand-
ing experiments (oil drop, cathode rays, alpha particles, photoelectric, etc.) within 
an HPS perspective was explicitly discussed in class. At the end of the course all 
participants were evaluated on the responses to a five-item questionnaire, based 
on assertions derived from Cooper’s framework. Participants were required to 
respond by indicating if they were: (a) In agreement, (b) In partial agreement, or 
(c) In disagreement, and explain their response.

Martin Perl’s (Nobel Laureate) Perspective on the Nature of Science and Teaching Science 
(Chapter 7). Martin L. Perl was the recipient of the 1995 Nobel Prize in phys-
ics for his discovery of the Tau Lepton, based on a 16-year history (1963–1979), 
when all experimental measurements agreed with the hypothesis that the Tau 
was a lepton produced by a known electromagnetic interaction. Besides this, Perl 
has also worked on the isolation of elementary particles with fractional electric 
charge, namely quarks. Based on his experience as an experimental scientist, Perl 
has formulated a philosophy of speculative experiments (Perl, 2004; Perl & Lee, 
1997). The objective of this chapter is to present a brief account of the discovery 
of the Tau Lepton and work on quarks, in order to understand the NOS and then 
draw implications for teaching science.

Nature of science manifests itself in the different topics of the science cur-
riculum as heuristic principles. Textbooks, by emphasizing not only the empirical 
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nature of science but also the underlying heuristic principles, can be particularly 
helpful in facilitating conceptual change (Niaz, 2001a). It is plausible to suggest 
that ‘science in the making’ based on historical reconstructions can provide stu-
dents and teachers with innovative teaching strategies in order to facilitate a better 
understanding of the nature of science (Niaz, 2011).

Notes
1 Kenneth G. Wilson was awarded the 1982 Nobel Prize in Physics for his theory of 

critical phenomena in connection with phase transitions. In Gooday et al. (2008), 
Wilson has posed an interesting question: “Does science education need the history of 
science?” and responded in the affirmative by suggesting that the history of science be 
included in the science curriculum.

2 When the neutron was discovered by Chadwick in 1932, Fermi renamed Pauli’s 
particle the ‘neutrino’.
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